Abstract
Voltage measurements using the ac Josephson effect and electrical resistance measurements using the quantum Hall effect are capable of very high precision, despite the relatively poor control of details of the devices. Such measurements rely on topological quantum numbers, which, unlike symmetry-based quantum numbers, are insensitive to deviations of the system from ideality. The circulation in superfluid 4 He , flux quantization in superconductors and quantized Hall conductance are all examples of topological quantum numbers, but only the last two are known to be very precise. Vinen's early measurement of quantized circulation was based on measurement of the resulting Magnus force, and we (Ping Ao, Qian Niu and I) have recently shown that the strength of the Magnus force can itself be determined by an argument that shares common features with topological arguments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.