Abstract
We study an efficient algorithm to hash any single-qubit gate into a braid of Fibonacci anyons represented by a product of icosahedral group elements. By representing the group elements by braid segments of different lengths, we introduce a series of pseudogroups. Joining these braid segments in a renormalization group fashion, we obtain a Gaussian unitary ensemble of random-matrix representations of braids. With braids of length O(log2(1/epsilon)), we can approximate all SU(2) matrices to an average error epsilon with a cost of O(log(1/epsilon)) in time. The algorithm is applicable to generic quantum compiling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.