Abstract
We consider topological protection mechanisms in dissipative quantum systems in the presence of quenched disorder, with the intent to prolong coherence times of qubits. The physical setting is a network of qubits and dissipative cavities whose coupling parameters are tunable, such that topological edge states can be stabilized. The evolution of a fiducial qubit is entirely determined by a non-Hermitian Hamiltonian which thus emerges from a bona-fide physical process. It is shown how even in the presence of disorder winding numbers can be defined and evaluated in real space, as long as certain symmetries are preserved. Hence we can construct the topological phase diagrams of noisy open quantum models, such as the non-Hermitian disordered Su-Schrieffer- Heeger dimer model and a trimer model that includes longer-range couplings. In the presence of competing disorder parameters, interesting re-entrance phenomena of topologically non-trivial sectors are observed. This means that in certain parameter regions, increasing disorder drastically increases the coherence time of the fiducial qubit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.