Abstract

We analyze the topological properties of the one-dimensional Bose–Hubbard model with a quasiperiodic superlattice potential. This system can be realized in interacting ultracold bosons in an optical lattice in the presence of an incommensurate superlattice potential. We first analyze the quasiperiodic superlattice formed by the cosine function, which we call the Harper-like Bose–Hubbard model. We compute the Chern number and observe gap-closing behavior as the interaction strength U is changed. Also, we discuss the bulk-edge correspondence in our system. Furthermore, we explore the phase diagram as a function of U and a continuous deformation parameter β between the Harper-like model and another important quasiperiodic lattice, the Fibonacci model. We numerically confirm that the incommensurate charge density wave (ICDW) phase is topologically nontrivial and that it is topologically equivalent in the whole ICDW region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call