Abstract
A fundamental result proved by Bourgain, Fremlin and Talagrand states that the space B1(M) of Baire one functions over a Polish space M is an angelic space. Stegall extended this result by showing that the class B1(M,E) of Baire one functions valued in a normed space E is angelic. These results motivate our study of various topological properties in the classes Bα(X,G) of Baire-α functions, where α is a nonzero countable ordinal, G is a metrizable non-precompact abelian group and X is a G-Tychonoff first countable space. In particular, we show that (1) Bα(X,G) is a κ-Fréchet–Urysohn space and hence it is an Ascoli space, and (2) Bα(X,G) is a k-space iff X is countable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.