Abstract
We prove three results about representations of real numbers (or elements of other topological spaces) by infinite strings. Such representations are useful for the description of real number computations performed by digital computers or by Turing machines. First, we show that the so-called admissible representations, a topologically natural class of representations introduced by Kreitz and Weihrauch, are essentially the continuous extensions (with a well-behaved domain) of continuous and open representations. Second, we show that there is no admissible representation of the real numbers such that every real number has only finitely many names. Third, we show that a rather interesting property of admissible real number representations holds true also for a certain non-admissible representation, namely for the naive Cauchy representation: the property that continuity is equivalent to relative continuity with respect to the representation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.