Abstract
We study the topological structure of matter-light excitations, so called polaritons, in a quantum spin Hall insulator coupled to photonic cavity modes. We identify a topological invariant in the presence of time reversal (TR) symmetry, and demonstrate the existence of a TR-invariant topological phase. We find protected helical edge states with energies below the lower polariton branch and characteristic uncoupled excitonic states, both detectable by optical techniques. Applying a Zeeman field allows us to relate the topological index to the double coverage of the Bloch sphere by the polaritonic pseudospin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.