Abstract
Topological Polar Surface Area, Molecular Weight, and Rotatable Bond Count Account for the Variations in the Inhibitory Potency of Antimycotics against Microsporum canis
Highlights
Superficial fungal infections, which are commonly caused by dermatophytes including Microsporum canis, are treated with topical antimycotics, but resistance to these topical agents was observed in cases of tinea unguium and tinea capitis which necessitate the use of systemic antifungal drugs.[1,2,3]
Statistical evaluation of the molecular descriptors of the antifungal drugs showed that molecular weight exhibited a positive correlation with heavy atom count, hydrogen bond acceptor count, and topological polar surface area (Table 4)
Complexity of the antimycotics was positively correlated with hydrogen bond acceptor and heavy atom counts, topological polar surface area, and molecular weight
Summary
Superficial fungal infections, which are commonly caused by dermatophytes including Microsporum canis, are treated with topical antimycotics, but resistance to these topical agents was observed in cases of tinea unguium and tinea capitis which necessitate the use of systemic antifungal drugs.[1,2,3] Molecular properties such as topological polar surface area, heavy atom count, hydrogen bond acceptor and donor counts, rotatable bond count, complexity, lipophilicity, and molecular weight were important descriptors in assessing the inhibitory effect of drugs. Since statistical modelling is a very important tool in predicting biological activities of compounds[4], antifungal drugs against M. canis were statistically evaluated using multiple linear regression analysis (MLRA) and principal component analysis (PCA). In drug design, establishing the relationship between the activity and the properties of a compound is of utmost importance.[5] The generated relationship will likewise unveil the relevant molecular properties of the existing antifungal drugs that would account for their inhibitory action against M. canis. Findings of the investigation would offer additional insights relevant to the synthesis of new derivatives of antimycotics as more effective treatments of dermatophytoses
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.