Abstract

Topological photonics provides a new opportunity for the examination of novel topological properties of matter, in which the energy band theory and ideas in topology are utilized to manipulate the propagation of photons. Since the discovery of topological insulators in condensed matter, researchers have studied similar topological effects in photonics. Topological photonics can lead to materials that support the robust unidirectional propagation of light without back reflections. This ideal transport property is unprecedented in traditional optics and may lead to radical changes in integrated optical devices. In this review, we present the exciting developments of topological photonics and focus on several prominent milestones of topological phases in photonics, such as topological insulators, topological semimetals, and higher-order topological phases. We conclude with the prospect of novel topological effects and their applications in topological photonics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.