Abstract

The topological phonons, electronic structure, and transport properties of Li2CaX (X = Sn and Pb) have been investigated using first-principles. Topological phononic states are facilitated by Dirac-like band crossings observed in optical phonon branches, which are ensured by calculated surface states in the (001) plane. Li2CaPb has very low lattice thermal conductivity(κl), as evidenced by shorter phonon lifetime, acoustic phonon mode dispersion, and low Debye temperature. The value of κl is low at high temperatures due to Dirac-like crossings in optical phonon branches exhibiting non-trivial topological properties. The inclusion of hybrid functional transits Li2CaPb into an indirect bandgap semiconductor. Li2CaPb has a figure of merit of 0.15 for holes and 0.2 for electrons at 500 K. Topological phonons combined with promising transport features in Li2CaX (X = Sn and Pb) may be desirable for future device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.