Abstract

We present simple lattice realizations of symmetry-protected topological phases with $q$-form global symmetries where charged excitations have $q$ spatial dimensions. Specifically, we construct $d$ space-dimensional models supported on a $(d+1)$-colorable graph by using a family of unitary phase gates, known as multiqubit control-$Z$ gates in quantum information community. In our construction, charged excitations of different dimensionality may coexist and form a short-range entangled state which is protected by symmetry operators of different dimensionality. Nontriviality of proposed models, in a sense of quantum circuit complexity, is confirmed by studying protected boundary modes, gauged models, and corresponding gapped domain walls. We also comment on applications of our construction to quantum error-correcting codes, and discuss corresponding fault-tolerant logical gates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call