Abstract

The growing skill in the synthesis processes of new materials has intensified the interest in exploring the properties of systems modeled by more complex lattices. Two-dimensional super-honeycomb lattices, have been investigated in metallic organic frameworks. They turned out as a significant route to the emergence of localized electronic responses manifested as flat bands in their structure with topological isolating behavior. A natural inquiry is a complete analysis of their topological phases in the presence of electronic correlation effects. Here we analyze the electron–electron correlation effects via Hubbard mean-field approximation on the topological phases of 2D and quasi-1D graphene-Kagome lattices. The 2D spin conductivity phase’s diagrams describe metallic, trivial, and topological insulating behaviors, considering different energy coupling and electronic occupations. Our results pave the way to smart-engineered nanostructured devices with relevant applications in spintronics and transport responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call