Abstract

We have performed an ab initio investigation of the electronic properties of the graphene sheet adsorbed by Ru adatoms (Ru/graphene). For a particular set of triangular arrays of Ru adatoms, we find the formation of four (spin-polarized) Dirac cones attributed to a suitable overlap between two hexagonal lattices: one composed by the C sites of the graphene sheet, and the other formed by the surface potential induced by the Ru adatoms. Upon the presence of spin-orbit coupling (SOC) nontrivial band gaps take place at the Dirac cones promoting several topological phases. Depending on the Ru concentration, the system can be topologically characterized among the phases (i) quantum spin Hall (QSH), (ii) quantum anomalous Hall (QAH), (iii) metal, (iv) or trivial insulator. For each concentration, the topological phase is characterized by the ab initio calculation of the Chern number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.