Abstract
We study the magnetic proximity effect on a two-dimensional topological insulator in a CrI3/SnI3/CrI3 trilayer structure. From first-principles calculations, the BiI3-type SnI3 monolayer without spin–orbit coupling has Dirac cones at the corners of the hexagonal Brillouin zone. With spin–orbit coupling turned on, it becomes a topological insulator, as revealed by a non-vanishing Z2 invariant and an effective model from symmetry considerations. Without spin–orbit coupling, the Dirac points are protected if the CrI3 layers are stacked ferromagnetically, and are gapped if the CrI3 layers are stacked antiferromagnetically, which can be explained by the irreducible representations of the magnetic space groups and , corresponding to ferromagnetic and antiferromagnetic stacking, respectively. By analyzing the effective model including the perturbations, we find that the competition between the magnetic proximity effect and spin–orbit coupling leads to a topological phase transition between a trivial insulator and a topological insulator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.