Abstract

We investigate a two-dimensional tiling model. Even though the degrees of freedom in this model are discrete, it has a hidden continuous global symmetry in the infinite lattice limit, whose corresponding Goldstone modes are the quasicrystalline phasonic degrees of freedom. We show that due to this continuous symmetry and despite the apparent discrete nature of the model, a topological phase transition from a quasi-long-range ordered to a disordered phase occurs at a finite temperature, driven by vortex proliferation. We argue that some of the results are universal properties of two-dimensional systems whose ground state is a quasicrystalline state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.