Abstract
Abstract Topological charges of nodal lines in a multigap system are represented by non-Abelian numbers, and the Euler class, a topological invariant, can be used to explain their topological phase transitions, such as pair-annihilation of nodal lines. Up until now, no discussion of phase transitions of nodal lines in photonic crystals using the Euler class has been reported, despite the fact that the Euler class and topological phase transition have recently been addressed in metallic or acoustic crystals. Here, we show how the deformation of a photonic crystal causes topological phase transitions in the nodal lines, and the Euler class can be used to theoretically predict the nodal lines’ stability based on the non-Abelian topological charge theory. Specifically, by manipulating the separation between the two single diamond structures and the extent of structural distortion, we numerically demonstrate the topological transition of nodal lines, e.g., from nodal lines to nodal rings. We then demonstrate that the range of surface states is strongly influenced by the topological phase transition of nodal lines. Moreover, the Zak phase was used to explain the surface states’ existence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.