Abstract

ABSTRACTA model of CRN in two dimensions is presented, composed of equilateral but not equiangular polygons with a constant coordination number = 3; in a simplified version only pentagons, hexagons and heptagons are present in the network. We introduce the mean potential energy per atom averaged over a typical cell containing three adjacent polygons; we assume that although the thermal equilibrium is not attained for single atoms, it is attained on the level of these cells, so that we can apply the virial theorem for the cells. Then we minimize the free energy which contains the configuration entropy contribution. In terms of two variables P and δ (hexagon frequency and mean bond angle deviation) we get the surfaces of constant energy. Under stress the energy configurations cease to be one-connected, and the 0-th homotopy group is no more trivial. This can give rise to surface singularities (cracks).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.