Abstract

The interplay between symmetry and topology is one of the most exciting avenues of modern condensed matter research. Here, the authors propose a new and unified approach for describing the low-energy physics of two-dimensional spin-singlet superconductors, placing them in a class of topologically ordered states akin to quantum Hall fluids and spin liquids. Starting from a microscopic model of two-dimensional paired fermions with a dynamical electromagnetism (that is also confined to two spatial dimensions), the authors derive Chern-Simons theories for all spin-singlet gapped superconductors, including $s$-wave and chiral states. The topological field theories constructed here thus pave the way towards understanding superconductors as symmetry-enriched topological phases of matter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.