Abstract

We present a scheme to improve the noise threshold for fault-tolerant topological one-way computation with constant overhead. Certain cluster states of finite size, say star clusters, are constructed with logical qubits through an efficient verification process to achieve high fidelity. Then, the star clusters are connected near-deterministically with verification to form a three-dimensional cluster state to implement topological one-way computation. The necessary postselection for verification is localized within the star clusters, ensuring the scalability of computation. By using the Steane seven-qubit code for the logical qubits, this scheme works with a high error rate of $2%$ and reasonable resources comparable to or less than those for the other fault-tolerant schemes. A higher noise threshold would be achieved by adopting a larger code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.