Abstract

States of matter with nontrivial topology have been classified by their bulk symmetry properties. However, by cutting the topological insulator into ribbons, the symmetry of the system is reduced. By constructing effective Hamiltonians containing the proper symmetry of the ribbon, we find that the nature of topological states is dependent on the reduced symmetry of the ribbon and the appropriate boundary conditions. We apply our model to the recently discovered two-dimensional topological crystalline insulators composed by IV-VI monolayers, where we verify that the edge terminations play a major role on the Dirac crossings. Particularly, we find that some bulk cuts lead to nonsymmorphic ribbons, even though the bulk material is symmorphic. The nonsymmorphism yields a new topological protection, where the Dirac cone is preserved for arbitrary ribbon width. The effective Hamiltonians are in good agreement with ab initio calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.