Abstract
Recently it was demonstrated that the long-known transition between the gap and gapless superconducting states in the Abrikosov-Gor'kov theory of superconducting alloy with paramagnetic impurities is of the Lifshitz's type, i.e., at zero temperature this is the order phase transition. Since transitions of this kind in a normal metal are always associated to certain topological changes, then below we clarify the topological nature of the transition under consideration. Namely, we demonstrate that the topological invariant which in process of the transition undergoes the change is nothing but the Euler characteristic. Alternatively, in terms of the theory of catastrophes one can relate this transition to appearance of the cuspidal edge at the corresponding surface of the density of states as the function of energy and superconducting order parameter. The concept of experiments for the confirmation of order topological phase transition is proposed. The obtained theoretical results can be applied for the explanation of recent experiments with lightwave-induced gapless superconductivity, for the interpretation of the disorder-induced transition states via gapless phase in two-band superconductors, and the emergence of gapless color superconductivity in quantum chromodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.