Abstract

We show that the topology of the Fermi sea of a D-dimensional Fermi gas is reflected in the multipartite entanglement characterizing D+1 regions that meet at a point. For odd D we introduce the multipartite mutual information and show that it exhibits a logDL divergence as a function of system size L with a universal coefficient that is proportional to the Euler characteristic χF of the Fermi sea. This provides a generalization, for a Fermi gas, of the well-known result for D=1 that expresses the logL divergence of the bipartite entanglement entropy in terms of the central charge c characterizing a conformal field theory. For even D we introduce a charge-weighted entanglement entropy that is manifestly odd under a particle-hole transformation. We show that the corresponding charge-weighted mutual information exhibits a similar logDL divergence proportional to χF. Our analysis relates the universal behavior of the multipartite mutual information in the absence of interactions to the D+1 order equal-time density correlation function, which we show exhibits a universal behavior in the long wavelength limit proportional to χF. Our analytic results are based on the replica method. In addition, we perform a numerical study of the charge-weighted mutual information for D=2 that confirms several aspects of the analytic theory. Finally, we consider the effect of interactions perturbatively within the replica theory. We show that for D=3 the log3L divergence of the topological mutual information is not perturbed by weak short-ranged interactions, though for D=2 the charge-weighted mutual information is perturbed. Thus, for D=3 the multipartite mutual information provides a robust classification that distinguishes distinct topological Fermi liquid phases.12 MoreReceived 19 April 2022Accepted 12 July 2022DOI:https://doi.org/10.1103/PhysRevX.12.031022Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasEntanglement entropyEntanglement in field theoryFermi surfaceTopological materialsCondensed Matter, Materials & Applied Physics

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call