Abstract

Robot autonomous exploration is a challenging and valuable research field that has attracted widespread research interest in recent years. However, existing methods often encounter problems such as incomplete exploration, repeated exploration paths, and low exploration efficiency when facing large-scale scenes. Considering that many indoor and outdoor scenes usually have a prior topological map, such as road navigation maps, satellite road network maps, indoor computer-aided design (CAD) maps, etc., this paper incorporated this information into the autonomous exploration framework and proposed an innovative topological map-based autonomous exploration method for large-scale scenes. The key idea of the proposed method is to plan exploration paths with long-term benefits by tightly merging the information between robot-collected and prior topological maps. The exploration path follows a global exploration strategy but prioritizes exploring scenes outside the prior information, thereby preventing the robot from revisiting explored areas and avoiding the duplication of any effort. Furthermore, to improve the stability of exploration efficiency, the exploration path is further refined by assessing the cost and reward of each candidate viewpoint through a fast method. Simulation experimental results demonstrated that the proposed method outperforms state-of-the-art autonomous exploration methods in efficiency and stability and is more suitable for exploration in large-scale scenes. Real-world experimentation has also proven the effectiveness of our proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call