Abstract
We propose a topological localization method based on optical flow information. We analyse the statistical characteristics of the optical flow signal and demonstrate that the flow vectors can be used to identify and describe key locations in the environment. The key locations (nodes) correspond to significant scene changes and depth discontinuities. Since optical flow vectors contain position, magnitude and angle information, for each node, we extract low and high order statistical moments of the vectors and use them as descriptors for that node. Once a database of nodes and their corresponding optical flow features is created, the robot can perform topological localization by using the Mahalanobis distance between the current frame and the database. This is supported by field trials, which illustrate the repeatability of the proposed method for detecting and describing key locations in indoor and outdoor environments in challenging and diverse lighting conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.