Abstract
We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vortices (and anti-vortices). Although topological actions do not have a classical limit, they still lead to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition - at least up to moderate vortex suppression. Thus our study underscores the robustness of universality, which persists even when basic principles of classical physics are violated. In the massive phase, the analytically known Step Scaling Function (SSF) is reproduced in numerical simulations. In the massless phase, the BKT value of the critical exponent eta_c is confirmed. Hence, even though for some topological actions vortices cost zero energy, they still drive the standard BKT transition. In addition we identify a vortex-free transition point, which deviates from the BKT behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.