Abstract
The study of ecological systems has generated deep interest in exploring the complexity of chaotic food chains. The role of chaos in ecosystems is not entirely understood. One approach to have a better comprehension of ecological chaos is by analyzing it in mathematical models of basic food chains. In this article it is considered a classical chaotic food chain model from the literature. We use the theory of symbolic dynamics to study the topological entropy and the parameter space ordering of kneading sequences associated with one-dimensional maps that reproduce significant aspects of the model dynamics. The topological entropy allows us to distinguish different chaotic states in some realistic system parameter region. Another numerical invariant is introduced in order to characterize isentropic dynamics. Studying a set of maps with the same topological entropy, we exhibit numerical results about the relation between the second topological invariant and each of the control parameters in consideration. This work provides an illustration of how our understanding of ecological models can be enhanced by the theory of symbolic dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.