Abstract
Invariants for Riemann surfaces covered by the disc and for hyperbolic manifolds in general involving minimizing the measure of the image over the homotopy and homology classes of closed curves and maps of the k-sphere into the manifold are investigated. The invariants are monotonic under holomorphic mappings and strictly monotonic under certain circumstances. Applications to holomorphic maps of annular regions in ℂ and tubular neighborhoods of compact totally real submanifolds in general in ℂ n , n≥2, are given. The contractibility of a hyperbolic domain with contracting holomorphic mapping is explained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.