Abstract

Topological arguments are currently being used as a novel scheme to discern the properties of black holes while ignoring their detailed structure and specific field equations. Among various avenues of black hole physics, where this novel approach is being utilized, the phase transition in black hole thermodynamics lies at the forefront. There are several types of phase transition in black holes; such as the van der Waals type phase transition, Davies-type phase transition, extremal phase transition, and Hawking-Page (HP) transition. So far, the topological interpretation, where the critical point has been identified with the non-zero topological charge, has been obtained only for the van der Waals type phase transition and HP transition in different spacetimes. To complete the picture, here we provide the same interpretation for two other phase transitions: Davies-type phase transition and extremal phase transition. The entire analysis is general and is valid for any spacetime where these types of phase transitions are observed. More importantly, our analysis suggests that amid the apparent differences in these phase transitions, they share the same topological characteristics, i.e. non-zero topological charge arising from different thermodynamic potentials in different types of phase transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.