Abstract
The review of peculiarity of growth and experimental results of the magneto-transport measurements (longitudinal magneto-resistance Rxx and the Hall resistance Rxy) over a wide interval of temperatures for several samples of Hg1−xCdxTe (x ≈ 0.13–0.15) grown by MBE is presented in this paper. An amazing temperature stability of the SdH-oscillation period and amplitude is observed in the entire temperature interval of measurements up to 50 K. Moreover, the quantum Hall effect (QHE) behaviour of the Hall resistance was shown in the same temperature interval. These peculiarities of the Rxx and Rxy for strained thin layers are interpreted using quantum Hall conductivity (QHC) on topologically protected surface states (TPSS). In the case of not strained layers it is assumed that the QHC on the TPSS contributes also to the conductance of the bulk samples. The experimental results on magneto-transport (QHC and SdH) obtained for the strained 100 nm thickness Hg1−xCdxTe layer are interpreted on the basis of the 8 × 8 kp model and an advantage of the Hg1−xCdxTe as topological insulators is shown. This article is an expanded version of the scientific reports presented at the International Conference on Semiconductor Nanostructures for Optoelectronics and Biosensors 2016 ICSeNOB2016, May 22–25, 2016, Rzeszow, Poland.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.