Abstract

We present homotopy theoretic and geometric interpretations of the Kane–Mele invariant for gapped fermionic quantum systems in three dimensions with time-reversal symmetry. We show that the invariant is related to a certain 4-equivalence which lends it an interpretation as an obstruction to a block decomposition of the sewing matrix up to non-equivariant homotopy. We prove a Mayer–Vietoris Theorem for manifolds with [Formula: see text]-actions which intertwines Real and [Formula: see text]-equivariant de Rham cohomology groups, and apply it to derive a new localization formula for the Kane–Mele invariant. This provides a unified cohomological explanation for the equivalence between the discrete Pfaffian formula and the known local geometric computations of the index for periodic lattice systems. We build on the relation between the Kane–Mele invariant and the theory of bundle gerbes with [Formula: see text]-actions to obtain geometric refinements of this obstruction and localization technique. In the preliminary part we review the Freed–Moore theory of band insulators on Galilean spacetimes with emphasis on geometric constructions, and present a bottom-up approach to time-reversal symmetric topological phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.