Abstract

We investigate the effect of spatially correlated disorder on two-dimensional topological insulators and on the quantum spin Hall effect which the helical edge states in these systems give rise to. Our work expands the scope of previous investigations which found that uncorrelated disorder can induce a nontrivial phase called the topological Anderson insulator (TAI). In extension of these studies, we find that spatial correlations in the disorder can entirely suppress the emergence of the TAI phase. We show that this phenomenon is associated with a quantum percolation transition and quantify it by generalizing an existing effective medium theory to the case of correlated disorder potentials. The predictions of this theory are in good agreement with our numerics and may be crucial for future experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call