Abstract

Mobile robot typically has limited on-board resources and may be applied in different indoor environment. Thus, it is necessary that they can learn a map and navigate themselves autonomously with lightweight algorithms. A novel topological map-building-based localization and navigation method is proposed in this paper. Based on the depth curve provided by a 3D sensor, a progressive Bayesian classifier is developed to realize direct corridor type identification. Instead of extracting features from single observation, information from multi-observations are fused to achieve a more robust performance. A topological map generation and loop closing method are proposed to build the environment map through autonomous exploration. Based on the derived map and the Markov localization method, the robot can then localize itself and navigate freely in the indoor environment. Experiments are performed on a recently built mobile robot system, and the results verify the effectiveness of the proposed methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.