Abstract

The algebraic polynomial plays a significant role in mathematical chemistry to compute the exact expressions of distance-based, degree-distance-based, and degree-based topological indices. The topological index is utilized as a significant tool in the study of the quantitative structure activity relationship (QSAR) and quantitative structures property relationship (QSPR) which correlate a molecular structure to its different properties and activities. Graphs containing finite commutative rings have wide applications in robotics, information and communication theory, elliptic curve cryptography, physics, and statistics. In this article, the topological indices of the total graph T ℤ n n ∈ ℤ + , the zero divisor graph Γ ℤ r n ( r is prime, n ∈ ℤ + ), and the zero divisor graph Γ ℤ r × ℤ s × ℤ t ( r , s , t are primes) are computed using some algebraic polynomials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.