Abstract

The three-site spin correlation, S(i)·(S(j)×S(k)) on the neighboring triangular sites i, j and k, termed scalar spin chirality, can endow the conduction electron with a quantum Berry phase and resultant transverse (Hall) transport. The paramagnetic barely metallic state was prepared in hole-doped Y2Mo2O7 with pyrochlore lattice using a high-pressure synthesis method, which is further endowed with the spin chirality by partially replacing Y site with Tb (content x). The local spin chirality formed by the adjacent three Tb Ising moments on the pyrochlore lattice can couple to the conduction electrons to give rise to the topological Hall effect whose magnitude increases in proportion to x3 or the density of the Tb-moment triangular clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call