Abstract

The topological metal states in electronic systems have been extensively studied, but topological phonons were explored only in few examples so far. Here, we expose for the first time that the topological nodal gimbal phonons, type-I and type-II Weyl phonons are simultaneously present in T-carbon, a recently realized new allotrope of carbon. At about 15.2 THz, we find that there exist three mutually intersecting nodal loops (named as nodal gimbal phonons) around {\Gamma} point, and two pairs of type-I Weyl phonons on the boundary of Brillouin zone around each X point. In addition, there exist three pairs of type-II Weyl phonons at about 14.5 THz around each L point. It is shown that these exotic topological phonons are protected by corresponding symmetries, and lead to topologically nontrivial surface states. Our findings not only afford plenty of intriguing topological phonon states in a simple material like T-carbon but also provide a new platform to study novel properties of topological phonons, which would facilitate further both experimental and theoretical works in future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.