Abstract
We study cohomological gauge theories on total spaces of holomorphic line bundles over complex manifolds and obtain their reduction to the base manifold by $U(1)$-equivariant localization of the path integral. We exemplify this general mechanism by proving via exact path integral localization a reduction for local curves conjectured in hep-th/0411280, relevant to the calculation of black hole entropy/Gromov–Witten invariants. Agreement with the four-dimensional gauge theory is recovered by taking into account in the latter non-trivial contributions coming from one-loop fluctuation determinants at the boundary of the total space. We also study a class of abelian gauge theories on Calabi–Yau local surfaces, describing the quantum foam for the $A$-model, relevant to the calculation of Donaldson–Thomas invariants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.