Abstract

We construct the topological Fukaya category of a surface with genus greater than one, making this model intrinsic to the topology of the surface. Instead of using the area form of the surface, we use an admissibility condition borrowed from Heegaard-Floer theory which ensures invariance under isotopy . In this paper we show finiteness of the moduli space using purely topological means and compute the Grothendieck group of the topological Fukaya category. We also show the faithfulness of MCG-action on the topological Fukaya category in this setup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.