Abstract
A new approach to regular and chaotic fluid advection is presented that utilizes the Thurston–Nielsen classification theorem. The prototypical two-dimensional problem of stirring by a finite number of stirrers confined to a disk of fluid is considered. The theory shows that for particular ‘stirring protocols’ a significant increase in complexity of the stirred motion – known as topological chaos – occurs when three or more stirrers are present and are moved about in certain ways. In this sense prior studies of chaotic advection with at most two stirrers, that were, furthermore, usually fixed in place and simply rotated about their axes, have been ‘too simple’. We set out the basic theory without proofs and demonstrate the applicability of several topological concepts to fluid stirring. A key role is played by the representation of a given stirring protocol as a braid in a (2+1)-dimensional space–time made up of the flow plane and a time axis perpendicular to it. A simple experiment in which a viscous liquid is stirred by three stirrers has been conducted and is used to illustrate the theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.