Abstract

Topological states of matter in equilibrium, as well as out of equilibrium, have been thoroughly investigated during the last years in condensed-matter and cold-atom systems. However, the geometric topology of the studied samples is usually trivial, such as a ribbon or a cylinder. In this paper, we consider a graphene M\"obius band irradiated with circularly polarised light. Interestingly, due to the non-orientability of the M\"obius band, a homogeneous quantum Hall effect cannot exist in this system, but the quantum spin Hall effect can. To avoid this restriction, the irradiation is applied in a longitudinal-domain-wall configuration. In this way, the periodic time-dependent driving term tends to generate the quantum anomalous Hall effect. On the other hand, due to the bent geometry of the M\"obius band, we expect a strong spin-orbit coupling, which may lead to quantum spin Hall-like topological states. Here, we investigate the competition between these two phenomena upon varying the amplitude and the frequency of the light, for a fixed value of the spin-orbit coupling strength. The topological properties are analysed by identifying the edge states in the Floquet spectrum at intermediate frequencies, when there are resonances between the light frequency and the energy difference between the conduction and valence bands of the graphene system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.