Abstract

Moiré-pattern-based potential engineering has become an important way to explore exotic physics in a variety of two-dimensional condensed matter systems. While these potentials have induced correlated phenomena in almost all commonly studied 2D materials, monolayer graphene has remained an exception. We demonstrate theoretically that a single layer of graphene, when placed between two bulk boron nitride crystal substrates with the appropriate twist angles, can support a robust topological ultraflat band emerging as the second hole band. This is one of the simplest platforms to design and exploit topological flat bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call