Abstract
We introduce the concept of topological finite-determinacy for germs of analytic functions within a fixed ideal I, which provides a notion of topological finite-determinacy of functions with non-isolated singularities. We prove the following statement which generalizes classical results of Thom and Varchenko: let A be the complement in the ideal I of the space of germs whose topological type remains unchanged under a deformation within the ideal that only modifies sufficiently large order terms of the Taylor expansion. Then A has infinite codimension in I in a suitable sense. We also prove the existence of generic topological types of families of germs of I parametrized by an irreducible analytic set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.