Abstract
Action principles of the BF type for diffeomorphism invariant topological field theories living in n-dimensional spacetime manifolds are presented. Their construction is inspired by Cuesta and Montesinos' recent paper where Cartan's first and second structure equations together with first and second Bianchi identities are treated as the equations of motion for a field theory. In opposition to that paper, the current approach involves also auxiliary fields and holds for arbitrary n-dimensional spacetimes. Dirac's canonical analysis for the actions is detailedly carried out in the generic case and it is shown that these action principles define topological field theories, as mentioned. The current formalism is a generic framework to construct geometric theories with local degrees of freedom by introducing additional constraints on the various fields involved that destroy the topological character of the original theory. The latter idea is implemented in two-dimensional spacetimes where gravity coupled to matter fields is constructed out, which has indeed local excitations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.