Abstract

A rich variety of order parameter manifolds of multicomponent Bose-Einstein condensates (BECs) admit various kinds of topological excitations, such as fractional vortices, monopoles, skyrmions, and knots. In this paper, we discuss two topological excitations in spinor BECs: non-Abelian vortices and knots. Unlike conventional vortices, non-Abelian vortices neither reconnect themselves nor pass through each other, but create a rung between them in a topologically stable manner. We discuss the collision dynamics of non-Abelian vortices in the cyclic phase of a spin-2 BEC. In the latter part, we show that a knot, which is a unique topological object characterized by a linking number or a Hopf invariant [$\pi_3 (S^2)=Z$], can be created using a conventional quadrupole magnetic field in a cold atomic system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.