Abstract

In three-dimensional space, a wave dislocation, that is, a quantized (optical) vortex or phase singularity, is a line zero of a complex scalar wavefunction. As a ‘time’ parameter varies, the topology of the vortex can change by encounter with a line of vanishing vorticity (curl of the current associated with the wavefunction). An isolated critical point of the field intensity, sliding along the zero-vorticity line like a bead on a wire, meets the vortex as it encounters the line, and so participates in the singular event. Local expansion and gauge and coordinate transformations show that the vortex topology can change generically by the appearance or disappearance of a loop, or by the reconnection of branches of a pair of hyperbolas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.