Abstract

On closed oriented surfaces of genus g ≥ 1, we consider functions that possess only one saddle critical point in addition to local maxima and minima. We study the problem of the realization of these functions on surfaces and construct an invariant that distinguishes them. For surfaces of genus \(g = \frac{{n - 1}}{2}\), where n is a prime number, we calculate the number of topologically nonequivalent functions with one maximum and one minimum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.