Abstract
Generic smooth map germs $({\mathsf R}^2,0)\to ({\mathsf R}^2,0)$ are topologically equivalent to cones of mappings $S^1\to S^1$. We carry out a complete topological classification of smooth stable mappings of the circle and show how this classification leads, via the result mentioned above, to a topological classification of finitely determined real analytic map germs $({\mathsf R}^2,0)\to ({\mathsf R}^2,0)$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.