Abstract

Let T be a continuous map on a compact metric space (X, d). A pair of distinct points x, y ∈ X is asymptotic if lim n→∞ d(T n x, T n y) = 0. We prove the following four conditions to be equivalent: 1. h top(T) = 0; 2. (X, T) has a (topological) extension (Y,S) which has no asymptotic pairs; 3. (X, T) has a topological extension (Y ′, S′) via a factor map that collapses all asymptotic pairs; 4. (X, T) has a symbolic extension (i.e., with (Y ′, S′) being a subshift) via a map that collapses asymptotic pairs. The maximal factors (of a given system (X, T)) corresponding to the above properties do not need to coincide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.