Abstract

A fast method is presented for computing the topological entropy of braids on the torus. This work is motivated by the need to analyze large braids when studying two-dimensional flows via the braiding of a large number of particle trajectories. Our approach is a generalization of Moussafir's technique for braids on the sphere. Previous methods for computing topological entropies include the Bestvina--Handel train-track algorithm and matrix representations of the braid group. However, the Bestvina--Handel algorithm quickly becomes computationally intractable for large braid words, and matrix methods give only lower bounds, which are often poor for large braids. Our method is computationally fast and appears to give exponential convergence towards the exact entropy. As an illustration we apply our approach to the braiding of both periodic and aperiodic trajectories in the sine flow. The efficiency of the method allows us to explore how much extra information about flow entropy is encoded in the braid as the number of trajectories becomes large.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.