Abstract

In this note, a notion of generalized topological entropy for arbitrary subsets of the space of all sequences in a compact topological space is introduced. It is shown that for a continuous map on a compact space, the generalized topological entropy of the set of all orbits of the map coincides with the classical topological entropy of the map. Some basic properties of this new notion of entropy are considered; among them are the behavior of the entropy with respect to disjoint union, cartesian product, component restriction and dilation, shift mapping, and some continuity properties with respect to Vietoris topology. As an example, it is shown that any self-similar structure of a fractal given by a finite family of contractions gives rise to a notion of intrinsic topological entropy for subsets of the fractal. A generalized notion of Bowen’s entropy associated to any increasing sequence of compatible semimetrics on a topological space is introduced and some of its basic properties are considered. As a special case for $1\leq p\leq \infty $ , the Bowen p-entropy of sets of sequences of any metric space is introduced. It is shown that the notions of generalized topological entropy and Bowen $\infty $ -entropy for compact metric spaces coincide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.