Abstract
Topological entanglements in biopolymers could drive them to certain internal statics and dynamics with important implications for biological functions. In this study, by means of molecular dynamics simulations, we demonstrate that the minimal crossing pattern of a braid plays a major role in its structural and dynamical properties; the braid consists of a knotted ring and an interlocked entwined unknotted polymer ring. In particular, we show that depending on the bending rigidity of the chains, the conformational energy of the braid can be either lower or higher than the unlocked polymer rings. Additionally, we find that a non-identical crossing pattern in the braid could distinctly enforce concerted internal conformational fluctuations between the interlocked rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.